Calcination reduction reaction is used to prepare Pt/EB (emeraldine base)-XC72 (Vulcan carbon black) composites as the cathode material of a proton exchange membrane fuel cell (PEMFC). The EB-XC72 core-shell composite obtained from directly polymerizing aniline on XC72 particles is able to chelate and capture the Pt-ions before calcination. X-ray diffraction spectra demonstrate Pt particles are successfully obtained on the EB-XC72 when the calcined temperature is higher than 600 °C. Micrographs of TEM and SEM illustrate the auent, Pt nanoparticles are uniformly distributed on EB-XC72 at 800 °C (Pt/EB-XC72/800). More Pt is deposited on Pt/EB-XC72 composite as temperatures are higher than 600 °C. The Pt/EB-XC72/800 catalyst demonstrates typical type of a cyclic voltammograms (C-V) curve of a Pt-catalyst with clear Pt-H oxidation and Pt-O reduction peaks. The highest number of transferred electrons during ORR approaches 3.88 for Pt/EB-XC72/800. The maximum power density of the single cell based on Pt/EB-XC72/800 reaches 550 mW cm-2.
CITATION STYLE
Huang, W. Y., Chang, M. Y., Wang, Y. Z., Huang, Y. C., Ho, K. S., Hsieh, T. H., & Kuo, Y. C. (2020). Polyaniline based pt-electrocatalyst for a proton exchanged membrane fuel cell. Polymers, 12(3). https://doi.org/10.3390/polym12030617
Mendeley helps you to discover research relevant for your work.