Monoclonal antibodies specific for the cyclobutane pyrimidine dimer (CPD) are widely used for detection and quantification of DNA photolesions. However, the mechanisms of antigen binding by anti-CPD antibodies are little understood. Here we report NMR analyses of antigen recognition by TDM-2, which is a mouse monoclonal antibody specific for the cis-syn-cyclobutane thymine dimer (T[c,s]T). 31P NMR and surface plasmon resonance data indicated that the epitope recognized by TDM-2 comprises hexadeoxy-nucleotides centered on the CPD. Chemical shift perturbations observed for TDM-2 Fab upon binding to d(T[c,s]T) and d(TAT[c,s]TAT) were examined in order to identify the binding sites for these antigen analogs. It was revealed that d(T[c,s]T) binds to the central part of the antibody-combining site, while the CPD-flanking nucleotides bind to the positively charged area of the V(H) domain via electrostatic interactions. By applying a novel NMR method utilizing a pair of spin-labeled DNA analogs, the orientation of DNA with respect to the antigen-binding site was determined: CPD-containing oligonucleotides bind to TDM-2 in a crooked form, draping the 3'-side of the nucleotides onto the H1 and H3 segments, with the 5'-side on the H2 and L3 segments. These data provide valuable information for antibody engineering of TDM-2.
CITATION STYLE
Torizawa, T., Yamamoto, N., Suzuki, T., Nobuoka, K., Komatsu, Y., Morioka, H., … Shimada, I. (2000). DNA binding mode of the Fab fragment of a monoclonal antibody specific for cyclobutane pyrimidine dimer. Nucleic Acids Research, 28(4), 944–951. https://doi.org/10.1093/nar/28.4.944
Mendeley helps you to discover research relevant for your work.