Gap junctional communication promotes apoptosis in a connexin-type- dependent manner

75Citations
Citations of this article
81Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Gap junctions (GJs) have been described to modulate cell death and survival. It still remains unclear whether this effect requires functional GJ channels or depends on channel-independent effects of connexins (Cx), the constituents of GJs. Therefore, we analysed the apoptotic response to streptonigrin (SN, intrinsic apoptotic pathway) or to α-Fas (extrinsic apoptotic pathway) in HeLa cells expressing Cx43 as compared with empty vector-transfected (CTL) cells. Apoptosis assessed by annexin V-fluorescein isothiocyanate/propidium iodide staining was significantly higher in HeLa-Cx43 compared with HeLa-CTL cells. Moreover, the cleavage of caspase-7 or Parp occurred earlier in HeLa-Cx43 than in HeLa-CTL cells. Comparative analysis of the effect of two further (endothelial) Cx (Cx37 and Cx40) on apoptosis revealed that apoptosis was highest in HeLa-Cx43 and lowest in HeLa-Cx37 cells, and correlated with the GJ permeability (assessed by spreading of a GJ-permeable dye and locally induced Ca2+ signals). Pharmacologic inhibition of GJ formation in HeLa-Cx43 cells reduced apoptosis significantly. The role of GJ communication was further analysed by the expression of truncated Cx43 proteins with and without channel-forming capacity. Activation of caspases was higher in cells expressing the channel-building part (HeLa-Cx43NT-GFP) than in cells expressing the channel-incompetent C-terminal part of Cx43 (HeLa-Cx43CT-GFP) only. A hemichannel-dependent release and, hence, paracrine effect of proapoptotic signals could be excluded since the addition of a peptide (Pep)-blocking Cx43-dependent hemichannels (but not GJs) did not reduce apoptosis in HeLa-Cx43 cells. Treatment with SN resulted in a significant higher increase of the intracellular free Ca2+ concentration in HeLa-Cx43 and HeLa-Cx43NT-GFP cells compared with HeLa-CTL or HeLa-Cx43CT-GFP cells, suggesting that Ca2+ or a Ca2+-releasing agent could play a signalling role. Blocking of inositol triphosphate receptors reduced the SN-induced Ca2+ increase as well as the increase in apoptosis. Our observations suggest that Cx43 and Cx40 but not Cx37 promote apoptosis via gap junctional transfer of pro-apoptotic signals between cells. © 2013 Macmillan Publishers Limited All rights reserved.

Cite

CITATION STYLE

APA

Kameritsch, P., Khandoga, N., Pohl, U., & Pogoda, K. (2013). Gap junctional communication promotes apoptosis in a connexin-type- dependent manner. Cell Death and Disease, 4(4). https://doi.org/10.1038/cddis.2013.105

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free