Use of a design of experiments approach to optimise production of a recombinant antibody fragment in the periplasm of Escherichia coli: selection of signal peptide and optimal growth conditions

23Citations
Citations of this article
81Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Production of recombinant proteins such as antibody fragments in the periplasm of the bacterium Escherichia coli has a number of advantages, including the ability to form disulphide bonds, aiding correct folding, and the relative ease of release and subsequent capture and purification. In this study, we employed two N-terminal signal peptides, PelB and DsbA, to direct a recombinant scFv antibody (single-chain variable fragment), 13R4, to the periplasm via the Sec and SRP pathways respectively. A design of experiments (DoE) approach was used to optimise process conditions (temperature, inducer concentration and induction point) influencing bacterial physiology and the productivity, solubility and location of scFv. The DoE study indicated that titre and subcellular location of the scFv depend on the temperature and inducer concentration employed, and also revealed the superiority of the PelB signal peptide over the DsbA signal peptide in terms of scFv solubility and cell physiology. Baffled shake flasks were subsequently used to optimise scFv production at higher biomass concentrations. Conditions that minimised stress (low temperature) were shown to be beneficial to production of periplasmic scFv. This study highlights the importance of signal peptide selection and process optimisation for the production of scFv antibodies, and demonstrates the utility of DoE for selection of optimal process parameters.

Cite

CITATION STYLE

APA

Kasli, I. M., Thomas, O. R. T., & Overton, T. W. (2019). Use of a design of experiments approach to optimise production of a recombinant antibody fragment in the periplasm of Escherichia coli: selection of signal peptide and optimal growth conditions. AMB Express, 9(1). https://doi.org/10.1186/s13568-018-0727-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free