As one of the media of the ground and feet, the design of footwear products has lately received great attention, and the cushioning performance of the sole has become a key factor for the comfort and sportiness of the foot. In this paper, a new type of middle sole sports shoes with an alternating gradient lattice structure was proposed. The dynamic response of the structure was analyzed by ABAQUS software, and the model was validated by modal analysis. The effects of different kinds of alternating lattice and uniform lattice sole models on vibration isolation were analyzed by using the vibration level difference as the evaluation index of vibration characteristics. The analysis results are as follows: (a) We found that the mean of the vibration level difference of the alternating gradient structure is higher than that of the uniform lattice structure, which confirms the feasibility of the alternating gradient arrangement and its excellent buffering performance. (b) Two kinds of vibration stage drop values of the 24-series alternating lattice structure model are analyzed, and "C-G-X″ structure has the highest vibration stage drop value. In addition, the comprehensive analysis of the alternating gradient lattice structure of the soles shows that the four types of structures have good cushioning performance, and the C-series structure in the frequency range of 0-140 Hz vibration level difference value is higher than other series. The results show that the evaluation index of vibration level difference based on mechanical vibration characteristics can accurately analyze the response of different structure soles to vibration, which also provides a method for the future design of vibration reduction and exploration of the biomechanics of footwear.
CITATION STYLE
Wang, C., Liu, X., Yue, Y., Huang, J., Huang, X., & Liu, B. (2021). Study on Vibration Damping Mechanism of Shoe Sole with Alternating Lattice Structure Using Vibration Level Difference. Mathematical Problems in Engineering, 2021. https://doi.org/10.1155/2021/6647573
Mendeley helps you to discover research relevant for your work.