Polychlorinated biphenyl electrochemical aptasensor based on a diamond-gold nanocomposite to realize a sub-femtomolar detection limit

7Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Polychlorinated biphenyls (PCBs) with high toxicity, low lethal dose, and bioaccumulation have been inhibited for application in wide fields, and a highly efficient trace detection is thus greatly desirable. In this study, we produce dense Au-nanoparticles by twice sputtering and twice annealing (T-Au-NPs) on boron-doped diamond (BDD). The successful formation of T-Au-NPs/BDD nanocomposites was confirmed by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy analysis. Based on T-Au-NPs/BDD, an electronic biosensor with aptamers is fabricated to detect trace polychlorinated biphenyl-77 (PCB-77) by electrochemical impedance. A good linear relationship in the range of femtomolar to micromolar and significantly low detection limit of sub-femtomolar level (0.32 fM) are realized based on the biosensor. The emphasis of this research lies in the key role of the diamond substrate in the biosensor. It is demonstrated that the biosensor has excellent sensitivity, specificity, stability, and recyclability, which are favorable for detecting the trace PCB-77 molecule. It is attributed to the important effect presented by the BDD substrate and the synergistic influence of T-Au-NPs combined with aptamers.

Cite

CITATION STYLE

APA

Yuan, X., Jiang, Z., Wang, Q., Gao, N., Li, H., & Ma, Y. (2020). Polychlorinated biphenyl electrochemical aptasensor based on a diamond-gold nanocomposite to realize a sub-femtomolar detection limit. ACS Omega, 5(35), 22402–22410. https://doi.org/10.1021/acsomega.0c02846

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free