Overview of Artificial Intelligence-Driven Wearable Devices for Diabetes: Scoping Review

17Citations
Citations of this article
101Readers
Mendeley users who have this article in their library.

Abstract

Background: Prevalence of diabetes has steadily increased over the last few decades with 1.5 million deaths reported in 2012 alone. Traditionally, analyzing patients with diabetes has remained a largely invasive approach. Wearable devices (WDs) make use of sensors historically reserved for hospital settings. WDs coupled with artificial intelligence (AI) algorithms show promise to help understand and conclude meaningful information from the gathered data and provide advanced and clinically meaningful analytics. Objective: This review aimed to provide an overview of AI-driven WD features for diabetes and their use in monitoring diabetes-related parameters. Methods: We searched 7 of the most popular bibliographic databases using 3 groups of search terms related to diabetes, WDs, and AI. A 2-stage process was followed for study selection: reading abstracts and titles followed by full-text screening. Two reviewers independently performed study selection and data extraction, and disagreements were resolved by consensus. A narrative approach was used to synthesize the data. Results: From an initial 3872 studies, we report the features from 37 studies post filtering according to our predefined inclusion criteria. Most of the studies targeted type 1 diabetes, type 2 diabetes, or both (21/37, 57%). Many studies (15/37, 41%) reported blood glucose as their main measurement. More than half of the studies (21/37, 57%) had the aim of estimation and prediction of glucose or glucose level monitoring. Over half of the reviewed studies looked at wrist-worn devices. Only 41% of the study devices were commercially available. We observed the use of multiple sensors with photoplethysmography sensors being most prevalent in 32% (12/37) of studies. Studies reported and compared >1 machine learning (ML) model with high levels of accuracy. Support vector machine was the most reported (13/37, 35%), followed by random forest (12/37, 32%). Conclusions: This review is the most extensive work, to date, summarizing WDs that use ML for people with diabetes, and provides research direction to those wanting to further contribute to this emerging field. Given the advancements in WD technologies replacing the need for invasive hospital setting devices, we see great advancement potential in this domain. Further work is needed to validate the ML approaches on clinical data from WDs and provide meaningful analytics that could serve as data gathering, monitoring, prediction, classification, and recommendation devices in the context of diabetes.

Cite

CITATION STYLE

APA

Ahmed, A., Aziz, S., Abd-Alrazaq, A., Farooq, F., & Sheikh, J. (2022, August 1). Overview of Artificial Intelligence-Driven Wearable Devices for Diabetes: Scoping Review. Journal of Medical Internet Research. JMIR Publications Inc. https://doi.org/10.2196/36010

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free