MicroRNAs (miRNAs) are a group of small non-coding RNA molecules, which serve an important function in the development of multidrug resistance in cancer through the post-transcriptional regulation of gene expression and RNA silencing. In the present study, the functional effects of miR-197 were analyzed in chemo-resistant gastric cancer cells. Low expression levels of miR-197 were observed in the fluorouracil (5-FU)-resistant gastric cell line SGC7901/5-FU when compared with those in the parental gastric cell line SGC7901. Overexpression of miR-197 in SGC7901/5-FU cells was identified to partially restore 5-FU sensitivity. miRNA target prediction algorithms suggested that mitogen-activated protein kinase 1 (MAPK1) is a candidate target gene for miR-197. A luciferase reporter assay confirmed that miR-197 led to silencing of the MAPK1 gene by recognizing and then specifically binding to the predicted site of the MAPK1 mRNA 3'untranslated region. When miR-197 was overexpressed in SGC7901 cells, the protein levels of MAPK1 were downregulated. Furthermore, MAPK1 knockdown significantly increased the growth inhibition rate of the SGC7901/5-FU cells compared with those in the control group. These results indicated that miR-197 may influence the sensitivity of 5-FU treatment in a gastric cancer cell line by targeting MAPK1.
CITATION STYLE
Xiong, H. L., Zhou, S. W., Sun, A. H., He, Y., Li, J., & Yuan, X. (2015). MicroRNA-197 reverses the drug resistance of fluorouracil-induced SGC7901 cells by targeting mitogen-activated protein kinase 1. Molecular Medicine Reports, 12(4), 5019–5025. https://doi.org/10.3892/mmr.2015.4052
Mendeley helps you to discover research relevant for your work.