Design and 3D-printing of MRI-compatible cradle for imaging mouse tumors

  • Donohoe D
  • Dennert K
  • Kumar R
  • et al.
N/ACitations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The ability of 3D printing using plastics and resins that are magnetic resonance imaging (MRI) compatible provides opportunities to tailor design features to specific imaging needs. In this study an MRI compatible cradle was designed to fit the need for repeatable serial images of mice within a mouse specific low field MRI. Several designs were reviewed which resulted in an open style stereotaxic cradle to fit within specific bore tolerances and allow maximum flexibility with interchangeable radiofrequency (RF) coils. CAD drawings were generated, cradle was printed and tested with phantom material and animals. Images were analyzed for quality and optimized using the new cradle. Testing with multiple phantoms was done to affirm that material choice did not create unwanted image artifact and to optimize imaging parameters. Once phantom testing was satisfied, mouse imaging began. The 3D printed cradle fit instrument tolerances, accommodated multiple coil configurations and physiological monitoring equipment, and allowed for improved image quality and reproducibility while also reducing overall imaging time and animal safety. The generation of a 3D printed stereotaxic cradle was a low-cost option which functioned well for our laboratory.

Cite

CITATION STYLE

APA

Donohoe, D. L., Dennert, K., Kumar, R., Freudinger, B. P., & Sherman, A. J. (2021). Design and 3D-printing of MRI-compatible cradle for imaging mouse tumors. 3D Printing in Medicine, 7(1). https://doi.org/10.1186/s41205-021-00124-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free