Background. Data on the use of ceftolozane-tazobactam and emergence of ceftolozane-tazobactam resistance during multidrug resistant (MDR)-Pseudomonas aeruginosa infections are limited. Methods. We performed a retrospective study of 21 patients treated with ceftolozane-tazobactam for MDR-P. aeruginosa infections. Whole genome sequencing and quantitative real-time polymerase chain reaction were performed on longitudinal isolates. Results. Median age was 58 years; 9 patients (43%) were transplant recipients. Median simplified acute physiology score-II (SAPS-II) was 26. Eighteen (86%) patients were treated for respiratory tract infections; others were treated for bloodstream, complicated intraabdominal infections, or complicated urinary tract infections. Ceftolozane-tazobactam was discontinued in 1 patient (rash). Thirty-day all-cause and attributable mortality rates were 10% (2/21) and 5% (1/21), respectively; corresponding 90-day mortality rates were 48% (10/21) and 19% (4/21). The ceftolozane-tazobactam failure rate was 29% (6/21). SAPS-II score was the sole predictor of failure. Ceftolozane-tazobactam resistance emerged in 3 (14%) patients. Resistance was associated with de novo mutations, rather than acquisition of resistant nosocomial isolates. ampC overexpression and mutations were identified as potential resistance determinants. Conclusions. In this small study, ceftolozane-tazobactam was successful in treating 71% of patients with MDR-P. aeruginosa infections, most of whom had pneumonia. The emergence of ceftolozane-tazobactam resistance in 3 patients is worrisome and may be mediated in part by AmpC-related mechanisms. More research on treatment responses and resistance during various types of MDR-P. aeruginosa infections is needed to define ceftolozane-tazobactam's place in the armamentarium.
CITATION STYLE
Haidar, G., Philips, N. J., Shields, R. K., Snyder, D., Cheng, S., Potoski, B. A., … Nguyen, M. H. (2017). Ceftolozane-Tazobactam for the Treatment of Multidrug-Resistant Pseudomonas aeruginosa Infections: Clinical Effectiveness and Evolution of Resistance. Clinical Infectious Diseases, 65(1), 110–120. https://doi.org/10.1093/cid/cix182
Mendeley helps you to discover research relevant for your work.