Gravity theory based on current algebra is formulated. The gauge principle rather than general covariance combined with the equivalence principle plays a pivotal role in the formalism, and the latter principles are derived as a consequence of the theory. In this approach, it turns out that gauging the Poincaré algebra is not appropriate but gauging the SO(N,M) algebra gives a consistent theory. This makes it possible to have anti-de Sitter and de Sitter space-time by adopting a relation between the spin connection and the tetrad field. The Einstein equation is part of our basic equation for gravity, which is written in terms of the spin connection. When this formalism is applied to the E(11) algebra in which the three-form antisymmetric tensor is part of a gravity multiplet, we have a current algebra gravity theory based on M-theory in the sense that the internal group or the connection space representations of our model are those appearing in 11D supergravity. Moreover, when our formalism in its classical limit is applied to cosmology, by introducing conformal-like modes that connect the tetrad field/current and the spin connection field/current, we can obtain an accelerating universe in the manner of the "inflating"universe at its early stage.
CITATION STYLE
Funai, S. S., & Sugawara, H. (2020). Current algebra formulation of quantum gravity and its application to cosmology. Progress of Theoretical and Experimental Physics, 2020(9). https://doi.org/10.1093/ptep/ptaa108
Mendeley helps you to discover research relevant for your work.