Polymer semiconductors are promising candidates for wearable and skin-like X-ray detectors due to their scalable manufacturing, adjustable molecular structures and intrinsic flexibility. Herein, we fabricated an intrinsically stretchable n-type polymer semiconductor through spatial nanoconfinement effect for ultrasensitive X-ray detectors. The design of high-orientation nanofiber structures and dense interpenetrating polymer networks enhanced the electron-transporting efficiency and stability of the polymer semiconductors. The resultant polymer semiconductors exhibited an ultrahigh sensitivity of 1.52 × 104 μC Gyair−1 cm−2, an ultralow detection limit of 37.7 nGyair s−1 (comparable to the record-low value of perovskite single crystals), and polymer film X-ray imaging was achieved at a low dose rate of 3.65 μGyair s−1 (about 1/12 dose rate of the commercial medical chest X-ray diagnosis). Meanwhile, the hybrid semiconductor films could sustain 100% biaxial stretching strain with minimal degeneracy in photoelectrical performances. These results provide insights into future high-performance, low-cost e-skin photoelectronic detectors and imaging.
CITATION STYLE
Bian, Y., Liu, K., Ran, Y., Li, Y., Gao, Y., Zhao, Z., … Guo, Y. (2022). Spatially nanoconfined N-type polymer semiconductors for stretchable ultrasensitive X-ray detection. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-34968-1
Mendeley helps you to discover research relevant for your work.