Best practices in Biomedical Engineering education seek to connect classroom knowledge to practical applications. MIT’s Medical Device Design course is comprised of in-class didactics, individual laboratory assignments, and a semester-long, team- based design and prototyping challenge, based in real unmet biomedical need. Students in the course represent a broad set of undergraduate and graduate students, from diverse educational backgrounds, with different levels of training and expertise. This year, as a precursor to the semester-long project, we designed, piloted, and evaluated a new experiential learning lab based around a syringe pump, selected because of its prevalence in the clinical setting, exemplification of core, multidisciplinary biomedical engineering concepts, and suitability for a team-based learning exercise. Students individually calculated patient dosing requirements and translated desired volume and flow rate into stepper motor commands. Then, during a single in-class session, teams worked from a custom-designed and fabricated kit to assemble a syringe pump, breadboard electronics, implement software controls, and finally close the design loop by evaluating their pumps' dispensing performance. A post-lab survey of the student cohort indicated that this pilot lab provided a sound biomedical learning and teamwork opportunity that improved technical literacy. The survey also identified key opportunities for improvement – students wanted more time and instructor-guided learning to increase their understanding of the mechanical engineering, electrical engineering, and software subtopics. Consequently, next year we will expand the lab into a multi-class exercise, with enhanced lectures and supplementary materials. Overall, we share this problem-based learning exercise, designed to exemplify key concepts, improve teamwork, and foster hands-on tinkering skills, with other biomedical engineering instructors.
CITATION STYLE
Pennes, A., Mendez, K., Hanumara, N., Roche, E. T., Traverso, G., Custer, D., & Hom, G. (2023). A Hands-on Medical Mechatronics Exercise to Pump Up Student Learnings. Biomedical Engineering Education, 3(2), 235–242. https://doi.org/10.1007/s43683-022-00100-4
Mendeley helps you to discover research relevant for your work.