Investment as an important issue in daily life is accompanied by the occurrence of various financial assets, such as stocks, bonds, and mutual funds. However, risk tolerances vary across individuals. Individual investors have to select corresponding personalized investment portfolios to satisfy their own needs. Moreover, it is difficult for ordinary people to select a personalized investment portfolio by themselves, and it is too expensive and inefficient to look for professional consultation. Therefore, the objective of this research is to propose a personalized portfolio recommendation model, which can build the personalized portfolio based on investors' risk tolerances. In this research, investors' risk tolerance is determined by the fuzzy comprehensive evaluation method based on investors' demographic characteristics. The CVaR is used as the risk measurement of financial assets. The dynamics of the distribution of returns are described in the combined Copula-GARCH model, and the future scenarios of returns are generated by the Monte Carlo simulation based on the combined Copula-GARCH model to estimate CVaR. The mean-CVaR portfolio optimization model is used to find out the best personalized portfolio. Finally, experiments are conducted to validate the applicability and feasibility of the personalized investment portfolio optimization model. Results show that the proposed investment portfolio optimization model can recommend personalized investment portfolio according to investor's risk tolerance.
CITATION STYLE
Yu, C., & Liu, Y. (2021). A Personalized Mean-CVaR Portfolio Optimization Model for Individual Investment. Mathematical Problems in Engineering, 2021. https://doi.org/10.1155/2021/8863597
Mendeley helps you to discover research relevant for your work.