Towards behavioral based sensorimotor controller design for wearable soft exoskeletal applications

1Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.
Get full text

Abstract

This study presents the assessment of ankle-foot gait abnormalities and estimation of neuromuscular control for maintaining gait dynamic stability and avoid falls. Control signals are modelled as the rate of change in the body COM acceleration as an input and the COP velocity as an output. Experiments show that the toe foot condition is least stable than inverted and normal walk at loading phase. However, the overdamped motor output response, equally stable for the three undamped input instabilities, shows the robustness of our proposed motor controller. Results show that our novel neuromotor inspired controller, based on behavioral I/O signals, is robust and suitable for the assessment of exoskeletal stability and control of wearable soft robotic applications.

Cite

CITATION STYLE

APA

Mahmood, I., Martinez-Hernandez, U., & Dehghani-Sanij, A. A. (2017). Towards behavioral based sensorimotor controller design for wearable soft exoskeletal applications. In Biosystems and Biorobotics (Vol. 15, pp. 1281–1286). Springer International Publishing. https://doi.org/10.1007/978-3-319-46669-9_209

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free