The domestic pig is an attractive model for biomedical research because of similarities in anatomy and physiology to humans. However, key gaps remain in our understanding of the role of developmental genes in pig, limiting its full potential. In this publication, the role of NEUROGENIN 3 (NGN3), a transcription factor involved in endocrine pancreas development has been investigated by CRISPR/Cas9 gene ablation. Precomplexed Cas9 ribonucleoproteins targeting NGN3 were injected into in vivo derived porcine embryos, and transferred into surrogate females. On day 60 of pregnancy, nine fetuses were collected for genotypic and phenotypic analysis. One of the piglets was identified as an in-frame biallelic knockout (Δ2/Δ2), which showed a loss of putative NGN3-downstream target genes: NEUROD1 and PAX4, as well as insulin, glucagon, somatostatin and pancreatic polypeptide-Y. Fibroblasts from this fetus were used in somatic cell nuclear transfer to generate clonal animals to qualify the effect of mutation on embryonic lethality. Three live piglets were born, received colostrum and suckled normally, but experienced extreme weight loss over a 24 to 36-hour period requiring humane euthanasia. Expression of pancreatic endocrine hormones: insulin, glucagon, and somatostatin were lost. The data support a critical role of NGN3 in porcine endocrine pancreas development.
CITATION STYLE
Sheets, T. P., Park, K. E., Park, C. H., Swift, S. M., Powell, A., Donovan, D. M., & Telugu, B. P. (2018). Targeted Mutation of NGN3 Gene Disrupts Pancreatic Endocrine Cell Development in Pigs. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-22050-0
Mendeley helps you to discover research relevant for your work.