Malaria and anemia are public health problems that have an impact on social and economic development. Malaria causes 70,000 deaths each year and accounts for 17% of outpatient visits to health institutions. It is one of the causes of anemia. Therefore, knowing the relation between malaria and anemia could have a great contribution to the development of prevention strategies. This study is intended to jointly model the prevalence of malaria and anemia by employing a bivariate probit model and show their relationship. The data was obtained from 384 patients visiting Alaba health center. The results of the bivariate probit model shows that sex, age, education level and marital status are significantly associated with malaria and sex and education level are significantly associated with anemia. The results of the seemingly unrelated bivariate probit model shows that sex, education level, age and marital status are significantly determining the prevalence of malaria, and malaria, sex and education level are significantly determining the prevalence of anemia.
CITATION STYLE
Seyoum, S. (2018). Analysis of Prevalence of Malaria and Anemia Using Bivariate Probit Model. Annals of Data Science, 5(2), 301–312. https://doi.org/10.1007/s40745-018-0138-3
Mendeley helps you to discover research relevant for your work.