VO2 and VCO2 variabilities through indirect calorimetry instrumentation

4Citations
Citations of this article
56Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The aim of this paper is to understand how to measure the VO2 and VCO2 variabilities in indirect calorimetry (IC) since we believe they can explain the high variation in the resting energy expenditure (REE) estimation. We propose that variabilities should be separately measured from the VO2 and VCO2 averages to understand technological differences among metabolic monitors when they estimate the REE. To prove this hypothesis the mixing chamber (MC) and the breath-by-breath (BbB) techniques measured the VO2 and VCO2 averages and their variabilities. Variances and power spectrum energies in the 0-0.5 Hertz band were measured to establish technique differences in steady and non-steady state. A hybrid calorimeter with both IC techniques studied a population of 15 volunteers that underwent the clino-orthostatic maneuver in order to produce the two physiological stages. The results showed that inter-individual VO2 and VCO2 variabilities measured as variances were negligible using the MC while variabilities measured as spectral energies using the BbB underwent 71 and 56% (p < 0.05), increase respectively. Additionally, the energy analysis showed an unexpected cyclic rhythm at 0.025 Hertz only during the orthostatic stage, which is new physiological information, not reported previusly. The VO2 and VCO2 inter-individual averages increased to 63 and 39% by the MC (p < 0.05) and 32 and 40% using the BbB (p < 0.1), respectively, without noticeable statistical differences among techniques. The conclusions are: (a) metabolic monitors should simultaneously include the MC and the BbB techniques to correctly interpret the steady or non-steady state variabilities effect in the REE estimation, (b) the MC is the appropriate technique to compute averages since it behaves as a low-pass filter that minimizes variances, (c) the BbB is the ideal technique to measure the variabilities since it can work as a high-pass filter to generate discrete time series able to accomplish spectral analysis, and (d) the new physiological information in the VO2 and VCO2 variabilities can help to understand why metabolic monitors with dissimilar IC techniques give different results in the REE estimation. © 2013 Cadena-Méndez et al.

Cite

CITATION STYLE

APA

Cadena-Méndez, M., Escalante-Ramírez, B., Azpiroz-Leehan, J., & Infante-Vázquez, O. (2013). VO2 and VCO2 variabilities through indirect calorimetry instrumentation. SpringerPlus, 2(1). https://doi.org/10.1186/2193-1801-2-688

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free