CTCF deletion alters the pluripotency and DNA methylation profile of human iPSCs

0Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Pluripotent stem cells are characterized by their differentiation potential toward endoderm, mesoderm, and ectoderm. However, it is still largely unclear how these cell-fate decisions are mediated by epigenetic mechanisms. In this study, we explored the relevance of CCCTC-binding factor (CTCF), a zinc finger-containing DNA-binding protein, which mediates long-range chromatin organization, for directed cell-fate determination. We generated human induced pluripotent stem cell (iPSC) lines with deletions in the protein-coding region in exon 3 of CTCF, resulting in shorter transcripts and overall reduced protein expression. Chromatin immunoprecipitation showed a considerable loss of CTCF binding to target sites. The CTCF deletions resulted in slower growth and modest global changes in gene expression, with downregulation of a subset of pluripotency-associated genes and neuroectodermal genes. CTCF deletion also evoked DNA methylation changes, which were moderately associated with differential gene expression. Notably, CTCF-deletions lead to upregulation of endo-mesodermal associated marker genes and epigenetic signatures, whereas ectodermal differentiation was defective. These results indicate that CTCF plays an important role in the maintenance of pluripotency and differentiation, especially towards ectodermal lineages.

Cite

CITATION STYLE

APA

Puri, D., Maaßen, C., Varona Baranda, M., Zeevaert, K., Hahnfeld, L., Hauser, A., … Wagner, W. (2023). CTCF deletion alters the pluripotency and DNA methylation profile of human iPSCs. Frontiers in Cell and Developmental Biology, 11. https://doi.org/10.3389/fcell.2023.1302448

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free