A reasonable dataset, which is an essential factor of renewable energy forecasting model development, sometimes is not directly available. Waiting for a substantial amount of training data creates a delay for a model to participate in the electricity market. Also, inappropriate selection of dataset size may lead to inaccurate modeling. Besides, in a multivariate environment, the impact of different variables on the output is often neglected or not adequately addressed. Therefore, in this work, a novel Mode Adaptive Artificial Neural Network (MAANN) algorithm has been proposed using Spearman’s rank-order correlation, Artificial Neural Network (ANN), and population-based algorithms for the dynamic learning of renewable energy sources power generation forecasting model. The proposed algorithm has been trained and compared with three population-based algorithms: Advanced Particle Swarm Optimization (APSO), Jaya Algorithm, and Fine-Tuning Metaheuristic Algorithm (FTMA). Also, the gradient descent algorithm is considered as a base case for comparing with the population-based algorithms. The proposed algorithm has been applied in predicting the power output of a Solar Photovoltaic (PV) and Wind Turbine Energy System (WTES). Using the proposed methodology with FTMA, the error was reduced by 71.261% and 80.514% compared to the conventional fixed-sized dataset gradient descent-based training approach for Solar PV and WTES, respectively.
CITATION STYLE
Zamee, M. A., & Won, D. (2020). Novel mode adaptive artificial neural network for dynamic learning: Application in renewable energy sources power generation prediction. Energies, 13(23). https://doi.org/10.3390/en13236405
Mendeley helps you to discover research relevant for your work.