Small molecule inhibitors of protein tyrosine kinases such as STI571 represent a major new class of therapeutics for target-selective treatment of human cancer. Clinical resistance formation to the BCR-ABL inhibitor STI571 has been observed in patients with advanced chronic myeloid leukemia and was frequently caused by a C to T single nucleotide change in the Abl kinase domain, which substituted Thr-315 with isoleucine and rendered BCR-ABL resistant to STI571 inhibition. The corresponding mutation in the epidermal growth factor receptor (EGFR) tyrosine kinase replaced Thr-766 of the EGFR by methionine and dramatically reduced the sensitivity of EGFR to inhibition by selective 4-anilinoquinazoline inhibitors such as PD153035. Inhibitor-resistant EGFR exhibited the same signaling capacity as wild-type receptor in vivo and provides a useful tool for analyzing EGFR-mediated signal transduction. Our data identify Thr-766 of the EGFR as a structural determinant that bears the potential to become a relevant feature in resistance formation during cancer therapy with EGFR-specific 4-anilinoquinazoline inhibitors.
CITATION STYLE
Blencke, S., Ullrich, A., & Daub, H. (2003). Mutation of threonine 766 in the epidermal growth factor receptor reveals a hotspot for resistance formation against selective tyrosine kinase inhibitors. Journal of Biological Chemistry, 278(17), 15435–15440. https://doi.org/10.1074/jbc.M211158200
Mendeley helps you to discover research relevant for your work.