The V3 loop of the human immunodeficiency virus (HIV)-1 surface envelope glycoprotein gp120 is a sphingolipid-binding domain mediating the attachment of HIV-1 to plasma membrane microdomains (rafts). Sphingolipid-induced conformational changes in gp120 are required for HIV-1 fusion. Galactosylceramide and sphingomyelin have been detected in highly purified preparations of prion rods, suggesting that the prion protein (PrP) may interact with selected sphingolipids. Moreover, a major conformational transition of the Alzheimer β-amyloid peptide has been observed upon interaction with sphingolipid-containing membranes. Structure similarity searches with the combinatorial extension method revealed the presence of a V3-like domain in the human prion protein PrP and in the Alzheimer β-amyloid peptide. In each case, synthetic peptides derived from the predicted V3-like domain were found to interact with monomolecular films of galactosylceramide and sphingomyelin at the air-water interface. The V3-like domain of PrP is a disulfide-linked loop (Cys179- Cys214) that includes the E200K mutation site associated with familial Creutzfeldt-Jakob disease. This mutation abrogated sphingomyelin recognition. The identification of a common sphingolipid-binding motif in gp120, PrP, and β-amyloid peptide underscores the role of lipid rafts in the pathogenesis of HIV-1, Alzheimer, and prion diseases and may provide new therapeutic strategies.
CITATION STYLE
Mahfoud, R., Garmy, N., Maresca, M., Yahi, N., Puigserver, A., & Fantini, J. (2002). Identification of a common sphingolipid-binding domain in Alzheimer, prion, and HIV-1 proteins. Journal of Biological Chemistry, 277(13), 11292–11296. https://doi.org/10.1074/jbc.M111679200
Mendeley helps you to discover research relevant for your work.