Self-assembled, hemin-functionalized peptide nanotubes: an innovative strategy for detecting glutathione and glucose molecules with peroxidase-like activity

9Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Accurately detecting dynamic changes in bioactive small molecules in real-time is very challenging. In this study, a hemin-based peptide assembly was rationally designed for the colorimetric detection of active small molecules. Hemin-functionalized peptide nanotubes were obtained through the direct incubation of hemin (hemin@PNTs) and peptide nanotubes (PNTs) or were coassembled with the heptapeptide Ac-KLVFFAL-NH2 via electrostatic, π–π stacking, and hydrophobic interactions (hemin-PNTs). This new substance is significant because it exhibits the benefits of both hemin and PNTs as well as some special qualities. First, hemin-PNTs exhibited higher intrinsic peroxidase-like activity, which, in the presence of H2O2, could catalyze the oxidation of the substrate 3,3',5,5'-tetramethylbenzidine (TMB) to yield a typical blue solution after 10 min at 25 ℃. Second, hemin-PNTs showed significantly higher activity than that of hemin, PNTs alone, or hemin@PNTs. Hemin-PNTs with a 20.0% hemin content may cooperate to improve catalytic activity. The catalytic activity was dependent on the reaction temperature, pH, reaction time, and H2O2 concentration. The nature of the TMB-catalyzed reaction may arise from the production of hydroxyl radicals. Fluorescence analysis was used to demonstrate the catalytic mechanism. According to this investigation, a new highly selective and sensitive colorimetric technique for detecting glutathione (GSH), L-cysteine, and glucose was established. The strategy demonstrated excellent sensitivity for GSH in the range of 1 to 30 μM with a 0.51 μM detection limit. Importantly, this glucose detection technique, which employs glucose oxidase and hemin-PNTs, is simple and inexpensive, with a 0.1 μM to 1.0 mM linear range and a 15.2 μM detection limit. Because of their low cost and high catalytic activity, hemin-PNTs are an excellent choice for biocatalysts in a diverse range of potential applications, including applications in clinical diagnostics, environmental chemistry, and biotechnology.

Cite

CITATION STYLE

APA

Xiang, S., Long, X., Tu, Q., Feng, J., Zhang, X., Feng, G., & Lei, L. (2023). Self-assembled, hemin-functionalized peptide nanotubes: an innovative strategy for detecting glutathione and glucose molecules with peroxidase-like activity. Nano Convergence, 10(1). https://doi.org/10.1186/s40580-023-00356-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free