Purpose To investigate whether intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) can be used to quantitatively analyze the cellular injury and microcirculation alterations in hepatic ischemia-reperfusion injury (HIRI). Materials and Methods Thirty-two New Zealand white rabbits were randomly and equally assigned to the sham group, 1-hour, 4-hour, and 12-hour groups according to the reperfusion time after 1 hour of ischemia using a 70% liver ischemia-reperfusion injury model. All the animals underwent IVIM-DWI with 12 b values at 1.5T. The imaging parameters (IVIM parameters and apparent diffusion coefficient [ADC]) among different groups were compared. The correlations between imaging parameters and histological scores, and the ratio of serum aspartate aminotransferase to serum alanine aminotransferase (serum AST/ALT) were analyzed. Results During the first hour of HIRI, true diffusion coefficient (D) and ADC significantly decreased (P < 0.05), while there was no significant decrease in perfusion fraction (f) (P = 0.708). There was fair to good correlation between histological scores and f (rs = -0.493 with the sham cases excluded, and -0.682 with all cases, both P < 0.05) and ADC (rs = -0.479 with the sham cases excluded, and -0.766 with all cases, both P < 0.05). There was no correlation between imaging parameters and serum AST/ALT with the sham cases excluded (P = 0.673 for f, 0.568 for D, 0.403 for ADC), and good correlation between D, ADC, and serum AST/ALT (r = 0.747 and 0.748, both P < 0.001) with all cases. Conclusion IVIM-DWI can quantitatively characterize an animal model of HIRI, with D and ADC sensitive in early detection of cellular injury, as well as fair to good correlation between f, ADC, and microcirculation alteration.
CITATION STYLE
Ye, W., Li, J., Guo, C., Chen, S., Liu, Y. B., Liu, Z., … Liang, C. (2016). Can intravoxel incoherent motion diffusion-weighted imaging characterize the cellular injury and microcirculation alteration in hepatic ischemia-reperfusion injury? An animal study. Journal of Magnetic Resonance Imaging, 43(6), 1328–1336. https://doi.org/10.1002/jmri.25092
Mendeley helps you to discover research relevant for your work.