Variable neighborhood strategy adaptive search to solve parallel-machine scheduling to minimize energy consumption while considering job priority and control makespan

9Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

Environmental concerns and rising energy prices put great pressure on the manufacturing industry to reduce pollution and save energy. Electricity is one of the main machinery energy sources in a plant; thus, reducing energy consumption both saves energy costs and protects our planet. This paper proposes the novel method called variable neighborhood strategy adaptive search (VaNSAS) in order to minimize energy consumption while also considering job priority and makespan control for parallel-machine scheduling problems. The newly presented neighborhood strategies of (1) solution destroy and repair (SDR), (2) track-transition method (TTM), and (3) multiplier factor (MF) were proposed and tested against the original differential evaluation (DE), current practice procedure (CU), SDR, TTM, and MF for three groups of test instances, namely small, medium, and large. Experimental results revealed that VaNSAS outperformed DE, CU, SDR, TTM, and MF, as it could find the optimal solution and the mathematical model in the small test instance, while the DE could only find 25%, and the others could not. In the remaining test instances, VaNSAS performed 16.35–19.55% better than the best solution obtained from Lingo, followed by DE, CU, SDR, TTM, and MF, which performed 7.89–14.59% better. Unfortunately, the CU failed to improve the solution and had worse performance than that of Lingo, including all proposed methods.

Cite

CITATION STYLE

APA

Nanthapodej, R., Liu, C. H., Nitisiri, K., & Pattanapairoj, S. (2021). Variable neighborhood strategy adaptive search to solve parallel-machine scheduling to minimize energy consumption while considering job priority and control makespan. Applied Sciences (Switzerland), 11(11). https://doi.org/10.3390/app11115311

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free