Genome-wide profiling of transcribed enhancers during macrophage activation

18Citations
Citations of this article
52Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Macrophages are sentinel cells essential for tissue homeostasis and host defence. Owing to their plasticity, macrophages acquire a range of functional phenotypes in response to microenvironmental stimuli, of which M(IFN-γ) and M(IL-4/IL-13) are well known for their opposing pro- and anti-inflammatory roles. Enhancers have emerged as regulatory DNA elements crucial for transcriptional activation of gene expression. Results: Using cap analysis of gene expression and epigenetic data, we identify on large-scale transcribed enhancers in bone marrow-derived mouse macrophages, their time kinetics, and target protein-coding genes. We observe an increase in target gene expression, concomitant with increasing numbers of associated enhancers, and find that genes associated with many enhancers show a shift towards stronger enrichment for macrophage-specific biological processes. We infer enhancers that drive transcriptional responses of genes upon M(IFN-γ) and M(IL-4/IL-13) macrophage activation and demonstrate stimuli specificity of regulatory associations. Finally, we show that enhancer regions are enriched for binding sites of inflammation-related transcription factors, suggesting a link between stimuli response and enhancer transcriptional control. Conclusions: Our study provides new insights into genome-wide enhancer-mediated transcriptional control of macrophage genes, including those implicated in macrophage activation, and offers a detailed genome-wide catalogue of transcribed enhancers in bone marrow-derived mouse macrophages.

Cite

CITATION STYLE

APA

Denisenko, E., Guler, R., Mhlanga, M. M., Suzuki, H., Brombacher, F., & Schmeier, S. (2017). Genome-wide profiling of transcribed enhancers during macrophage activation. Epigenetics and Chromatin, 10(1). https://doi.org/10.1186/s13072-017-0158-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free