Design of low RCS circularly polarized patch antenna array using metasurface for CNSS adaptive antenna applications

11Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

A low radar cross section (RCS) circularly polarized patch antenna array operating at the downlink S-band (2492 ± 5 MHz) of the Chinese Compass Navigation Satellite System (CNSS) is proposed. The low RCS is achieved by replacing the conventional metallic ground with an artificial magnetic conductor (AMC)-based metasurface. Two different AMC unit cells are designed having a phase difference within 180 ± 37° and combined in a chessboard-like configuration to realize the AMC-based metasurface. Furthermore, the AMC-based metasurface is utilized as the ground of the CNSS array for wideband RCS reduction. A wideband RCS reduction from 6 GHz to 17 GHz is achieved due to the wideband diffusion property of the AMC unit cells. The maximum RCS reduction is more than 14 dB at 13.3 GHz irrespective of the polarization direction of the incident waves. Moreover, the circular polarization (CP) performance is realized by embedding a circular slot on the patch radiator of the antenna element. The radiation characteristics of the CNSS array are hardly impacted by the inclusion of the metasurface-based ground. The proposed CNSS array has been fabricated and measured. The measurement results are in reasonable agreement with the simulations. The proposed CNSS array can be a good candidate for CNSS adaptive antenna applications where low RCS is simultaneously demanded.

Cite

CITATION STYLE

APA

Li, J., Khan, T. A., Chen, J., Raza, M. U., & Zhang, A. (2019). Design of low RCS circularly polarized patch antenna array using metasurface for CNSS adaptive antenna applications. Materials, 12(12). https://doi.org/10.3390/ma12121898

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free