Sentiment analysis for tweets using patterns and strategies to detect the genuineness of tweets

Citations of this article
Mendeley users who have this article in their library.
Get full text


Sentiment analysis related with distinguishing and classifying opinions or sentiments expressed in given text. Social media is completing a colossal quality of wealthy knowledge within the type of tweets, standing updates, diary posts etc. Sentiment analysis of this user generated knowledge is incredibly helpful in knowing the opinion of the gang. Twitter sentiment analysis is troublesome compared to general sentiment analysis thanks to the presence of slang words and misspellings. Knowledge base approach and Machine learning approach square measure the 2 methods used for analyzing sentiments from the text. Public and private opinion a few wide range of subjects’ square measure expressed and unfold frequently via numerous social media. Twitter offers organizations quick and effective thanks to analyze customers' view toward the crucial to success within the market place. Developing a program for sentiment analysis is an approach to be accustomed computationally live customers' perceptions. This project cognitive content together with varied patterns for tweets along a side multiple strategies to discover the sentiment class expressed in a very tweet and if a tweet is real or not. We proposed work to classify sentiments of tweets from people to determine if people are happy, sad, angry, etc. about particular topic. Also the purpose of the work is to check genuineness of tweets so that rumors about any topics can be detected and mitigated. This approach can be used in various fields further as like detecting people sentiment about particular social issues. Also fake tweets and rumors which may further exploit to social issues like riots, religion complexities can be removed. To achieve these goals and fetch tweets we used Twit4j API and various techniques such as NLP, TF-IDF, and Sentiment Classifications are applied to get results accordingly. We had maintained our own database of words for dictionary purpose as well as have been used OpenApache NLP with their predefined dictionaries.




Kulkarni, D., & Bogiri, N. (2019). Sentiment analysis for tweets using patterns and strategies to detect the genuineness of tweets. International Journal of Innovative Technology and Exploring Engineering, 8(10), 198–202.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free