Nondestructive determination of nitrogen, phosphorus and potassium contents in greenhouse tomato plants based on multispectral three-dimensional imaging

23Citations
Citations of this article
65Readers
Mendeley users who have this article in their library.

Abstract

Measurement of plant nitrogen (N), phosphorus (P), and potassium (K) levels are important for determining precise fertilization management approaches for crops cultivated in greenhouses. To accurately, rapidly, stably, and nondestructively measure the NPK levels in tomato plants, a nondestructive determination method based on multispectral three-dimensional (3D) imaging was proposed. Multiview RGB-D images and multispectral images were synchronously collected, and the plant multispectral reflectance was registered to the depth coordinates according to Fourier transform principles. Based on the Kinect sensor pose estimation and self-calibration, the unified transformation of the multiview point cloud coordinate system was realized. Finally, the iterative closest point (ICP) algorithm was used for the precise registration of multiview point clouds and the reconstruction of plant multispectral 3D point cloud models. Using the normalized grayscale similarity coefficient, the degree of spectral overlap, and the Hausdorff distance set, the accuracy of the reconstructed multispectral 3D point clouds was quantitatively evaluated, the average value was 0.9116, 0.9343 and 0.41 cm, respectively. The results indicated that the multispectral reflectance could be registered to the Kinect depth coordinates accurately based on the Fourier transform principles, the reconstruction accuracy of the multispectral 3D point cloud model met the model reconstruction needs of tomato plants. Using back-propagation artificial neural network (BPANN), support vector machine regression (SVMR), and gaussian process regression (GPR) methods, determination models for the NPK contents in tomato plants based on the reflectance characteristics of plant multispectral 3D point cloud models were separately constructed. The relative error (RE) of the N content by BPANN, SVMR and GPR prediction models were 2.27%, 7.46% and 4.03%, respectively. The RE of the P content by BPANN, SVMR and GPR prediction models were 3.32%, 8.92% and 8.41%, respectively. The RE of the K content by BPANN, SVMR and GPR prediction models were 3.27%, 5.73% and 3.32%, respectively. These models provided highly efficient and accurate measurements of the NPK contents in tomato plants. The NPK contents determination performance of these models were more stable than those of single-view models.

Cite

CITATION STYLE

APA

Sun, G., Ding, Y., Wang, X., Lu, W., Sun, Y., & Yu, H. (2019). Nondestructive determination of nitrogen, phosphorus and potassium contents in greenhouse tomato plants based on multispectral three-dimensional imaging. Sensors (Switzerland), 19(23). https://doi.org/10.3390/s19235295

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free