High blood glucose levels indicate diabetes mellitus. The conventional way was carried out to determine glucose levels, but this method just shows the total reducing sugar levels. An electrode was developed to analyze glucose in the presence of fructose by potentiometry. The optimum graphite paste electrodes-Imprinted based on polyeugenol and Ethylene Glycol Dimethacrylate (EGDMA) as crosslinkers, had been used as a glucose sensor. Polyeugenol was made by the polymerization reaction with a BF3 catalyst with a molecular weight of 6451.338 g/mol. A total of 2135.99 glucose was contacted with polyeugenol, and the result was crosslinked with EGDMA and 2,2'-Azobis(2-methylpropionitrile) (AIBN) initiator, then Molecularly Imprinted Polymer (MIP) was generated. The optimization of electrodes showed that the best composition of MIP: paraffin: graphite is 20:35:45 with the 19.16 mV/decade Nernstian Factor, which can measure samples at the range 10–5–10–1 M with a detection limit of 1.0334 × 10–5 M, a response time of 6–15 s, a lifetime (use) of 19 times and has good selectivity on fructose sample with Kij less than 1. Measurements using this electrode showed that honey contains 28.78% of glucose, not much different from the UV-Vis spectrophotometry, which is 29.68%, and HPLC is 30.42%.
CITATION STYLE
Djunaidi, M. C., Gunawan, G., Cahyaningrum, L., Lusiana, R. A., & Khasanah, M. (2022). Selective Identification for Glucose in the Presence of Fructose Using Imprinted Polyeugenol Modified Graphite Paste Electrode. Indonesian Journal of Chemistry, 22(4), 913–921. https://doi.org/10.22146/ijc.71013
Mendeley helps you to discover research relevant for your work.