The effect of oxygen and micronutrient composition of cell growth media on cancer cell bioenergetics and mitochondrial networks

15Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

Abstract

Cancer cell culture is routinely performed under superphysiologic O2 levels and in media such as Dulbecco’s Modified Eagle Medium (DMEM) with nutrient composition dissimilar to mammalian extracellular fluid. Recently developed cell culture media (e.g., Plasmax, Human Plasma-Like Medium (HPLM)), which are modeled on the metabolite composition of human blood plasma, have been shown to shift key cellular activities in several cancer cell lines. Similar effects have been reported with respect to O2 levels in cell culture. Given these observations, we investigated how media composition and O2 levels affect cellular energy metabolism and mitochondria network structure in MCF7, SaOS2, LNCaP, and Huh7 cells. Cells were cultured in physiologic (5%) or standard (18%) O2 levels, and in physiologic (Plasmax) or standard cell culture media (DMEM). We show that both O2 levels and media composition significantly affect mitochondrial abundance and network structure, concomitantly with changes in cellular bioenergetics. Extracellular acidification rate (ECAR), a proxy for glycolytic activity, was generally higher in cells cultured in DMEM while oxygen consumption rates (OCR) were lower. This effect of media on energy metabolism is an important consideration for the study of cancer drugs that target aspects of energy metabolism, including lactate dehydrogenase activity.

Cite

CITATION STYLE

APA

Moradi, F., Moffatt, C., & Stuart, J. A. (2021). The effect of oxygen and micronutrient composition of cell growth media on cancer cell bioenergetics and mitochondrial networks. Biomolecules, 11(8). https://doi.org/10.3390/biom11081177

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free