Synthesis and in vitro cytotoxicity and antibacterial activity of novel1,2,3-triazol-5-yl-phosphonates

13Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

Novel1,2,3-triazol-5-yl-phosphonates were prepared by the copper(I)-catalyzed domino reaction of phenylacetylene, organic azides and dialkyl phosphites. The process was optimized on the synthesis of the dibutyl (1-benzyl-4-phenyl-1H-1,2,3-triazol-5-yl)phosphonate in respect of the catalyst, the base and the solvent, as well as of the reaction parameters (molar ratio of the starting materials, atmosphere, temperature and reaction time). The method elaborated could be applied to a range of organic azides and dialkyl phosphites, which confirmed the large scope and the functional group tolerance. The in vitro cytotoxicity on different cell lines and the antibacterial activity of the synthesized1,2,3-triazol-5-yl-phosphonates was explored. According to the IC50 values determined, only modest antibacterial effect was detected, while some derivatives showed moderate activity against human promyelocytic leukemia HL-60 cells.

Cite

CITATION STYLE

APA

Tripolszky, A., Tóth, E., Szabó, P. T., Hackler, L., Kari, B., Puskás, L. G., & Bálint, E. (2020). Synthesis and in vitro cytotoxicity and antibacterial activity of novel1,2,3-triazol-5-yl-phosphonates. Molecules, 25(11). https://doi.org/10.3390/molecules25112643

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free