The Riemann Problem for Systems

0Citations
Citations of this article
2Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We return to the conservation law (1.2), but now study the case of systems, i.e., 5.1(formula presented) where (formula presented) and (formula presented) are vectors in $$\mathbb{R}^{n}$$. (We will not distinguish between row and column vectors, and use whatever is more convenient.) Furthermore, in this chapter we will consider only systems on the line; i.e., the dimension of the underlying physical space is still one. In Chapt. 2 we proved existence, uniqueness, and stability of the Cauchy problem for the scalar conservation law in one space dimension, i.e., well-posedness in the sense of Hadamard. However, this is a more subtle question in the case of systems of hyperbolic conservation laws. We will here first discuss the basic concepts for systems: fundamental properties of shock waves and rarefaction waves. In particular, we will discuss various entropy conditions to select the right solutions of the Rankine–Hugoniot relations. Using these results, we will eventually be able to prove well-posedness of the Cauchy problem for systems of hyperbolic conservation laws with small variation in the initial data.

Cite

CITATION STYLE

APA

Holden, H., & Risebro, N. H. (2015). The Riemann Problem for Systems. In Applied Mathematical Sciences (Switzerland) (Vol. 152, pp. 223–281). Springer. https://doi.org/10.1007/978-3-662-47507-2_5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free