Do visual cues contribute to the neural estimate of viewing distance used by the oculomotor system?

23Citations
Citations of this article
72Readers
Mendeley users who have this article in their library.

Abstract

Perceived shape and depth judgments that require knowledge of viewing distance are strongly influenced by both vergence angle and the pattern of vertical disparities across large visual fields. On the basis of this established contribution of visual cues to the neural estimate of viewing distance, we hypothesized that the oculomotor system would also make use of high-level visual cues to distance. To address this hypothesis, we investigated how compensatory eye movements during whole-body translation scale with viewing distance. Monkeys viewed large-field (85 x 68°) random-dot stereograms that were rear projected onto a fixed screen and simulated either a textured wall or pyramid at different viewing distances. In these stereograms, we independently manipulated vergence angle, horizontal and vertical disparity gradients, relative horizontal disparities, and textural cues to viewing distance. For comparison, random-dot patterns were also projected onto a moveable screen placed at different physical distances from the animal. Several cycles of left-right sinusoidal motion of the monkey at 5 Hz were interleaved with several cycles of motion in darkness, and the relationship between eye movement responses and viewing distance was quantified. As expected from previous work, the amplitude of compensatory eye movements depended strongly on vergence angle. Although visual cues to distance had a statistically significant effect on eye movements, these effects were ∼20-fold weaker than the effect of vergence angle. We conclude that sensory and motor systems do not share a common neural estimate of viewing distance and that the oculomotor system relies far less on visual cues than the perceptual system.

Cite

CITATION STYLE

APA

Wei, M., DeAngelis, G. C., & Angelaki, D. E. (2003). Do visual cues contribute to the neural estimate of viewing distance used by the oculomotor system? Journal of Neuroscience, 23(23), 8340–8350. https://doi.org/10.1523/jneurosci.23-23-08340.2003

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free