Na+-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood-brain barrier. A mechanism for glutamate removal

250Citations
Citations of this article
83Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Na+-dependent transporters for glutamate exist on astrocytes (EAAT1 and EAAT2) and neurons (EAAT3). These transporters presumably assist in keeping the glutamate concentration low in the extracellular fluid of brain. Recently, Na+-dependent glutamate transport was described on the abluminal membrane of the blood-brain barrier. To determine whether the above-mentioned transporters participate in glutamate transport of the blood-brain barrier, total RNA was extracted from bovine cerebral capillaries, cDNA for EAAT1, EAAT2, and EAAT3 was observed, indicating that mRNA was present. Western blot analysis demonstrated all three transporters were expressed on abluminal membranes, but none was detectable on luminal membranes of the blood-brain barrier. Measurement of transport kinetics demonstrated voltage dependence, K+-dependence, and an apparent K(m) of 14 μM (aggregate of the three transporters) at a transmembrane potential of -61 mV. Inhibition of glutamate transport was observed using inhibitors specific for EAAT2 (kainic acid and dihydrokainic acid) and EAAT3 (cysteine). The relative activity of the three transporters was found to be approximately 1:3:6 for EAAT1, EAAT2, and EAAT3, respectively. These transporters may assist in maintaining low glutamate concentrations in the extracellular fluid.

Cite

CITATION STYLE

APA

O’Kane, R. L., Martínez-López, I., DeJoseph, M. R., Viña, J. R., & Hawkins, R. A. (1999). Na+-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood-brain barrier. A mechanism for glutamate removal. Journal of Biological Chemistry, 274(45), 31891–31895. https://doi.org/10.1074/jbc.274.45.31891

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free