Background: Chrysotile asbestos accounts for > 90% of the asbestos used worldwide, and exposure is associated with asbestosis (asbestos-related fibrosis) and other malignancies; however, the molecular mechanisms involved are not fully understood. A common pathogenic mechanism for these malignancies is represented by epithelial–mesenchymal transition (EMT), through which epithelial cells undergo a morphological transformation to assume a mesenchymal phenotype. In the present work, we propose that chrysotile asbestos induces EMT through a mechanism involving a signaling pathway mediated by tranforming growth factor beta (TGF-β). Objectives: We investigated the role of chrysotile asbestos in inducing EMT in order to elucidate the molecular mechanisms involved in this event. Methods: Human bronchial epithelial cells (BEAS-2B) were incubated with 1 μg/cm2 chrysotile asbestos for ≤ 72 hr, and several markers of EMT were investigated. Experiments with specific inhibitors for TGF-β, glycogen synthase kinase–3β (GSK-3β), and Akt were performed to confirm their involvement in asbestos-induced EMT. Real-time polymerase chain reaction (PCR), Western blotting, and gelatin zymography were performed to detect mRNA and protein level changes for these markers. Results: Chrysotile asbestos activated a TGF-β–mediated signaling pathway, implicating the contributions of Akt, GSK-3β, and SNAIL-1. The activation of this pathway in BEAS-2B cells was associated with a decrease in epithelial markers (E-cadherin and β-catenin) and an increase in mesenchymal markers (α-smooth muscle actin, vimentin, metalloproteinases, and fibronectin). Conclusions: Our findings suggest that chrysotile asbestos induces EMT, a common event in asbestos-related diseases, at least in part by eliciting the TGF-β–mediated Akt/GSK-3β/ SNAIL-1 pathway.
CITATION STYLE
Gulino, G. R., Polimeni, M., Prato, M., Gazzano, E., Kopecka, J., Colombatto, S., … Aldieri, E. (2016). Effects of chrysotile exposure in human bronchial epithelial cells: Insights into the pathogenic mechanisms of asbestos-related diseases. Environmental Health Perspectives, 124(6), 776–784. https://doi.org/10.1289/ehp.1409627
Mendeley helps you to discover research relevant for your work.