Polyploidy and DNA methylation: New tools available

21Citations
Citations of this article
125Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Most plant species are recent or ancient polyploids (displaying at least one round of genome duplication in their history). Cultivated species (e.g. wheat, cotton, canola, sugarcane, coffee) and invasive species are often relatively recent polyploids, and frequently of hybrid origin (i.e. allopolyploids). Despite the genetic bottleneck occurring during the allopolyploid speciation process, the formation of such species from two divergent lineages leads to fixed heterozygosity decisive to their success. New phenotypes and new niche occupation are usually associated with this mode of speciation, as a result of both genomic rearrangements and gene expression changes of different magnitudes depending on the different polyploid species investigated. These gene expression changes affecting newly formed polyploid species may result from various, interconnected mechanisms, including (i) functional interactions between the homoeologous copies and between their products, that are reunited in the same nucleus and cell; (ii) the fate of duplicated copies, selective pressure on one of the parental copy being released which could lead to gene loss, pseudogenization, or alternatively, to subfunctionalization or neofunctionalization; and (iii) epigenetic landscape changes that in turn affect gene expression. As one of the interrelated processes leading to epigenetic regulation of gene expression, the DNA methylation status of newly formed species appears to be consistently affected following both hybridization and genome doubling. In this issue, Verhoeven et al. have investigated the fate of DNA methylation patterns that could affect naturally occurring new asexual triploid lineages of dandelions. As a result of such a ploidy level change, the authors demonstrate stably transmitted DNA methylation changes leading to unique DNA methylation patterns in each newly formed lineage. Most studies published to date on plant DNA methylation polymorphism were performed using restriction enzymes sensitive to methylation. Recently, new high-throughput methods were made available, thanks to the development of 'next-generation sequencing' techniques. The combination of these methods offers powerful and promising tools to investigate epigenetic variation in both model and non-model systems. © 2010 Blackwell Publishing Ltd.

Cite

CITATION STYLE

APA

Salmon, A., & Ainouche, M. L. (2010). Polyploidy and DNA methylation: New tools available. Molecular Ecology, 19(2), 213–215. https://doi.org/10.1111/j.1365-294X.2009.04461.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free