A computational framework for predicting obesity risk based on optimizing and integrating genetic risk score and gene expression profiles

11Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.

Abstract

Recent large-scale genome-wide association studies have identified tens of genetic loci robustly associated with Body Mass Index (BMI). Gene expression profiles were also found to be associated with BMI. However, accurate prediction of obesity risk utilizing genetic data remains challenging. In a cohort of 75 individuals, we integrated 27 BMI-associated SNPs and obesity-associated gene expression profiles. Genetic risk score was computed by adding BMI-increasing alleles. The genetic risk score was significantly correlated with BMI when an optimization algorithm was used that excluded some SNPs. Linear regression and support vector machine models were built to predict obesity risk using gene expression profiles and the genetic risk score. An adjusted R2 of 0.556 and accuracy of 76% was achieved for the linear regression and support vector machine models, respectively. In this paper, we report a new mathematical method to predict obesity genetic risk. We constructed obesity prediction models based on genetic information for a small cohort. Our computational framework serves as an example for using genetic information to predict obesity risk for specific cohorts.

Cite

CITATION STYLE

APA

Joseph, P. V., Wang, Y., Fourie, N. H., & Henderson, W. A. (2018). A computational framework for predicting obesity risk based on optimizing and integrating genetic risk score and gene expression profiles. PLoS ONE, 13(5). https://doi.org/10.1371/journal.pone.0197843

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free