Background: Food intake augments CO2 production; however, minute ventilation is not augmented during exercise after food intake. Respiratory chemoreceptors respond to CO2 and influence respiration. We examined the effect of food intake on respiratory chemosensitivity to CO2 in young adults. Methods: The hypercapnic ventilatory response was measured in eleven healthy individuals before and after food intake. To evaluate the respiratory chemoreflex response to CO2, minute ventilation was plotted against end-tidal PCO2 using data obtained with the rebreathing method. Results: Sublingual temperature, CO2 output, minute ventilation, and end-tidal PCO2 were all significantly higher at baseline in the session after food intake than in the session before food intake. On the other hand, there was no significant difference in chemosensitivity to CO2 between the sessions before and after food intake (1.60 ± 0.62 vs. 1.53 ± 0.62 l min-1 mmHg-1). Conclusions: Food intake does not influence respiratory chemosensitivity to CO2 in young adults, which is different from infants. This suggests that control of respiration differs between young adults and infants and that the elevated minute ventilation after food intake in young adults is not caused by a change in respiratory chemosensitivity.
CITATION STYLE
Hayashi, K., Suekuni, M., & Sugiyama, K. (2019). Effect of food intake on respiratory chemosensitivity to CO2 in young adults. Journal of Physiological Anthropology, 38(1). https://doi.org/10.1186/s40101-019-0200-7
Mendeley helps you to discover research relevant for your work.