Privacy and security are unavoidable challenges in the future of smart health services and systems. Several approaches for preserving privacy have been provided in the Internet of Health Things (IoHT) applications. However, with the emergence of COVID-19, the healthcare centers needed to track, collect, and share more critical data such as the location of those infected and monitor social distancing. Unfortunately, the traditional privacy-preserving approaches failed to deal effectively with emergency circumstances. In the proposed research, we introduce a Tokens Shuffling Approach (TSA) to preserve collected data’s privacy, security, and reliability during the pandemic without the need to trust a third party or service providers. TSA depends on a smartphone application and the proposed protocol to collect and share data reliably and safely. TSA depends on a proposed algorithm for swapping the identities temporarily between cooperated users and then hiding the identities by employing fog nodes. The fog node manages the cooperation process between users in a specific area to improve the system’s performance. Finally, TSA uses blockchain to save data reliability, ensure data integrity, and facilitate access. The results prove that TSA performed better than traditional approaches regarding data privacy and the performance level. Further, we noticed that it adapted better during emergency circumstances. Moreover, TSA did not affect the accuracy of the collected data or its related statistics. On the contrary, TSA will not affect the quality of primary healthcare services.
CITATION STYLE
Bahbouh, N., Basahel, A., Sendra, S., & Abi Sen, A. A. (2023). Tokens Shuffling Approach for Privacy, Security, and Reliability in IoHT under a Pandemic. Applied Sciences (Switzerland), 13(1). https://doi.org/10.3390/app13010114
Mendeley helps you to discover research relevant for your work.