Design of Robust Integral Terminal Sliding Mode Controllers with Exponential Reaching Laws for Solar PV and BESS-Based DC Microgrids with Uncertainties

9Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

In this paper, an integral terminal sliding mode controller (ITSMC) based on a modified exponential reaching law (MERL) is developed for providing large-signal DC-bus voltage stability while smoothing power flow in DC microgrids (DCMGs). It is worth mentioning that this control approach is not employed in DCMG applications yet to adjust the DC-bus voltage while preserving power balance. The proposed DCMG is made up of a solar photovoltaic (PV) unit, a battery energy storage system (BESS), and DC loads. A DC-DC boost converter (DDBC) and a bidirectional DC-DC converter (BDDC) are employed to connect the solar PV and BESS, respectively, with the DC-bus, which not only controls the output power of these units but also regulates the DC-bus voltage. First, a detailed dynamical model including external disturbances is developed for each component, i.e., the solar PV and BESS. Then, the proposed control approach is employed on these units to get their corresponding control signals. Afterward, the overall stability of each unit is ensured using the Lyapunov stability theory. Moreover, to ensure the robustness of the proposed controller, external disturbances are also bounded based on the value of user-defined constants. Finally, simulation results are used to evaluate the effectiveness of the proposed control approach in a variety of operational scenarios. Additionally, simulation results of the proposed control strategy are compared to those of existing controllers to demonstrate its superiority.

Cite

CITATION STYLE

APA

Yeasmin, S., Roy, T. K., & Ghosh, S. K. (2022). Design of Robust Integral Terminal Sliding Mode Controllers with Exponential Reaching Laws for Solar PV and BESS-Based DC Microgrids with Uncertainties. Sustainability (Switzerland), 14(13). https://doi.org/10.3390/su14137802

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free