To overcome the shortcomings of low photocatalytic efficiency, mpg-C3N4/Bi2WO6 photocatalysts have been successfully designed via a facile hydrothermal method. A succession of techniques was used to explore the morphology, structure, surface composition and photocatalytic property of the mpg-C3N4/Bi2WO6 material. The mpg-C3N4/Bi2WO6 nanohybrid has high photocatalytic performance for the degradation of tetracycline hydrochloride (TC) and rhodamine B (RhB). Holes, ·O2- and ·OH radicals are determined to be the active species in the process of photocatalytic degradation by ESR and capture experiments. The ultrathin thickness of nest-like Bi2WO6 and the introduction of mpg-C3N4 into the Bi2WO6 matrix can improve the photocatalytic efficiency. The photocatalytic Z-scheme mechanism of the system was also discussed in detail. This work paves the way for preparing visible-light-driven nanocomposites for pollutant degradation.
CITATION STYLE
Zhu, X., Liu, J., Zhao, Z., Yan, J., Xu, Y., Song, Y., … Li, H. (2017). Hydrothermal synthesis of mpg-C3N4 and Bi2WO6 nest-like structure nanohybrids with enhanced visible light photocatalytic activities. RSC Advances, 7(61), 38682–38690. https://doi.org/10.1039/c7ra06681c
Mendeley helps you to discover research relevant for your work.