Background: Through an arsenal of microbial enzymes, the gut microbiota considerably contributes to human metabolic processes, affecting nutrients, drugs, and environmental poisons. Azoreductases are a predominant group of microbiota-derived enzymes involved in xenobiotic metabolism and drug activation, but little is known about how compositional changes in the gut microbiota correlate with its azo-reducing activity. Results: To this end, we used high-throughput 16S rRNA amplicon sequencing, with Illumina MiSeq, to determine the microbial community composition of stool samples from 16 adults with different azo-reducing activity. High azo-reducing activity positively correlated with the relative abundance of phylum Firmicutes (especially genera Streptococcus and Coprococcus) but negatively with phylum Bacteroidetes (especially genus Bacteroides). Typical variations in the Firmicutes-to-Bacteroidetes and Prevotella-to-Bacteroides ratios were observed among samples. Multivariate analysis of the relative abundance of key microbial taxa and other diversity parameters confirmed the Firmicutes proportion as a major variable differentiating high and non-azo-reducers, while Bacteroidetes relative abundance was correlated with azo-reduction, sex, and BMI. Conclusions: This pilot study showed that stool samples with higher azo-reducing activity were enriched in Firmicutes but with relatively fewer Bacteroidetes. More samples and studies from different geographical areas are needed to bolster this conclusion. Better characterization of different azoreductase-producing gut microbes will increase our knowledge about the fate and differential human responses to azodye-containing drugs or orally consumed chemicals, thus contributing to efforts towards implementing microbiome testing in precision medicine and toxicology.
CITATION STYLE
Zahran, S. A., Ali-Tammam, M., Ali, A. E., & Aziz, R. K. (2021). Compositional variation of the human fecal microbiome in relation to azo-reducing activity: a pilot study. Gut Pathogens, 13(1). https://doi.org/10.1186/s13099-021-00454-0
Mendeley helps you to discover research relevant for your work.