Mechanisms of Improved Exercise Performance under Hyperoxia

35Citations
Citations of this article
96Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Background: The impact of hyperoxia on exercise limitation is still incompletely understood. Objectives: We investigated to which extent breathing hyperoxia enhances the exercise performance of healthy subjects and which physiologic mechanisms are involved. Methods: A total of 32 healthy volunteers (43 ± 15 years, 12 women) performed 4 bicycle exercise tests to exhaustion with ramp and constant-load protocols (at 75% of the maximal workload [Wmax] on FiO2 0.21) on separate occasions while breathing ambient (FiO2 0.21) or oxygen-enriched air (FiO2 0.50) in a random, blinded order. Workload, endurance, gas exchange, pulse oximetry (SpO2), and cerebral (CTO) and quadriceps muscle tissue oxygenation (QMTO) were measured. Results: During the final 15 s of ramp exercising with FiO2 0.50, Wmax (mean ± SD 270 ± 80 W), SpO2 (99 ± 1%), and CTO (67 ± 9%) were higher and the Borg CR10 Scale dyspnea score was lower (4.8 ± 2.2) than the corresponding values with FiO2 0.21 (Wmax 257 ± 76 W, SpO2 96 ± 3%, CTO 61 ± 9%, and Borg CR10 Scale dyspnea score 5.7 ± 2.6, p < 0.05, all comparisons). In constant-load exercising with FiO2 0.50, endurance was longer than with FiO2 0.21 (16 min 22 s ± 7 min 39 s vs. 10 min 47 s ± 5 min 58 s). With FiO2 0.50, SpO2 (99 ± 0%) and QMTO (69 ± 8%) were higher than the corresponding isotime values to end-exercise with FiO2 0.21 (SpO2 96 ± 4%, QMTO 66 ± 9%), while minute ventilation was lower in hyperoxia (82 ± 18 vs. 93 ± 23 L/min, p < 0.05, all comparisons). Conclusion: In healthy subjects, hyperoxia increased maximal power output and endurance. It improved arterial, cerebral, and muscle tissue oxygenation, while minute ventilation and dyspnea perception were reduced. The findings suggest that hyperoxia enhanced cycling performance through a more efficient pulmonary gas exchange and a greater availability of oxygen to muscles and the brain (cerebral motor and sensory neurons).

Cite

CITATION STYLE

APA

Ulrich, S., Hasler, E. D., Müller-Mottet, S., Keusch, S., Furian, M., Latshang, T. D., … Bloch, K. E. (2017). Mechanisms of Improved Exercise Performance under Hyperoxia. Respiration, 93(2), 90–98. https://doi.org/10.1159/000453620

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free