LncRNA-ENST00000446135 is a novel biomarker of cadmium toxicity in 16HBE cells, rats, and Cd-exposed workers and regulates DNA damage and repair

13Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Cadmium (Cd) and its compounds are well-known human carcinogens, but the mechanisms underlying the carcinogenesis are not well understood. This study aimed to investigate whether long noncoding RNA (LncRNA)-ENST00000446135 could serve as a novel biomarker of Cd toxicity in cells, animals, and Cd-exposed workers and regulate DNA damage and repair. LncRNA-ENST00000446135 expression increased gradually in cadmium chloride-transformed 16HBE cells. Small interfering RNA-mediated knockdown of LncRNA-ENST00000446135 inhibited the growth of DNA-damaged cells and decreased the expressions of DNA damage-related genes (ATM, ATR, and ATRIP), whereas increased the expressions of DNA repair-related genes (DDB1, DDB2, OGG1, ERCC1, MSH2, XRCC1, and BARD1). Chromatin immunoprecipitation-sequencing showed that MSH2 is a direct transcriptional target of lncRNA-ENST00000446135. Cadmium increased lncRNA-ENST00000446135 expression in the lung of Cd-exposed rats in a dose-dependent manner. A significant positive correlation was observed between blood ENST00000446135 expression and urinary/blood Cd concentrations, and there were significant correlations of LncRNA-ENST00000446135 expression with the DNA damage cell and the expressions of target genes in the lung of Cd-exposed rats and the blood of Cd-exposed workers and significantly correlated with liver and renal function in Cd-exposed workers. These results indicate that the expression of LncRNA-ENST00000446135 is upregulated and may serve as a signature for DNA damage and repair related to the epigenetic mechanisms underlying the cadmium toxicity and become a novel biomarker of cadmium toxicity.

Cite

CITATION STYLE

APA

Zhou, Z., Huang, Z., Chen, B., Lu, Q., Cao, L., & Chen, W. (2021). LncRNA-ENST00000446135 is a novel biomarker of cadmium toxicity in 16HBE cells, rats, and Cd-exposed workers and regulates DNA damage and repair. Toxicology Research, 9(6), 823–834. https://doi.org/10.1093/TOXRES/TFAA088

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free