Hydrological processes cause variations in gravitational potential and surface deformations, both of which are detectable using space geodetic techniques. We computed elastic deformation using continental water load estimates derived from the Gravity Recovery and Climate Experiment and compared to 3D deformation estimated from GPS observations. The agreement is very good in areas where large hydrologic signals occur over broad spatial scales, with correlation in horizontal components as high as 0.9. Agreement is also observed at smaller scales, including across Europe. This suggests that: a) both techniques are perhaps more accurate than previously thought and b) a large percentage of the non-linear variations seen in our GPS time series are most likely related to geophysical processes rather than analysis error. Low correlation at some sites suggests that local processes or site specific " analysis errors dominate the GPS deformation estimates rather than the broad-scale hydrologie signals detected by GRACE. Copyright 2009 by the American Geophysical Union.
CITATION STYLE
Tregoning, P., Watson, C., Ramillien, G., McQueen, H., & Zhang, J. (2009). Detecting hydrologic deformation using GRACE and GPS. Geophysical Research Letters, 36(15). https://doi.org/10.1029/2009GL038718
Mendeley helps you to discover research relevant for your work.