Subsonic, compressive turbulence transfers energy to cosmic rays (CRs), a process known as nonresonant reacceleration. It is often invoked to explain the observed ratios of primary to secondary CRs at ∼GeV energies, assuming wholly diffusive CR transport. However, such estimates ignore the impact of CR self-confinement and streaming. We study these issues in stirring box magnetohydrodynamic (MHD) simulations using Athena++, with field-aligned diffusive and streaming CR transport. For diffusion only, we find CR reacceleration rates in good agreement with analytic predictions. When streaming is included, reacceleration rates depend on plasma β . Due to streaming-modified phase shifts between CR and gas variables, they are slower than canonical reacceleration rates in low- β environments like the interstellar medium but remain unchanged in high- β environments like the intracluster medium. We also quantify the streaming energy-loss rate in our simulations. For sub-Alfvénic turbulence, it is resolution dependent (hence unconverged in large-scale simulations) and heavily suppressed compared to the isotropic loss rate v A · ∇ P CR / P CR ∼ v A / L 0 , due to misalignment between the mean field and isotropic CR gradients. Unlike acceleration efficiencies, CR losses are almost independent of magnetic field strength over β ∼ 1–100 and are, therefore, not the primary factor behind lower acceleration rates when streaming is included. While this paper is primarily concerned with how turbulence affects CRs, in a follow-up paper we consider how CRs affect turbulence by diverting energy from the MHD cascade, altering the pathway to gas heating and steepening the turbulent spectrum.
CITATION STYLE
Bustard, C., & Oh, S. P. (2022). Turbulent Reacceleration of Streaming Cosmic Rays. The Astrophysical Journal, 941(1), 65. https://doi.org/10.3847/1538-4357/aca021
Mendeley helps you to discover research relevant for your work.