Automated detection and classification of defective and abnormal dies in wafer images

5Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

This article presents an automated vision-based algorithm for the die-scale inspection of wafer images captured using scanning acoustic tomography (SAT). This algorithm can find defective and abnormal die-scale patterns, and produce a wafer map to visualize the distribution of defects and anomalies on the wafer. The main procedures include standard template extraction, die detection through template matching, pattern candidate prediction through clustering, and pattern classification through deep learning. To conduct the template matching, we first introduce a two-step method to obtain a standard template from the original SAT image. Subsequently, a majority of the die patterns are detected through template matching. Thereafter, the columns and rows arranged from the detected dies are predicted using a clustering method; thus, an initial wafer map is produced. This map is composed of detected die patterns and predicted pattern candidates. In the final phase of the proposed algorithm, we implement a deep learning-based model to determine defective and abnormal patterns in the wafer map. The experimental results verified the effectiveness and efficiency of our proposed algorithm. In conclusion, the proposed method performs well in identifying defective and abnormal die patterns, and produces a wafer map that presents important information for solving wafer fabrication issues.

Cite

CITATION STYLE

APA

Chen, H. C. (2020). Automated detection and classification of defective and abnormal dies in wafer images. Applied Sciences (Switzerland), 10(10). https://doi.org/10.3390/app10103423

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free