Deriving electromagnetic radial diffusion coefficients of radiation belt equatorial particles for different levels of magnetic activity based on magnetic field measurements at geostationary orbit

23Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

In this paper, we show that the correlation that exists between magnetic variations and induced electric fields through Faraday's law is of prime importance for adequately characterizing electromagnetic radial diffusion. Accordingly, we present an approach to derive electromagnetic radial diffusion coefficients based on magnetic field measurements at geostationary orbit. It consists of setting a very simple theoretical electromagnetic field model, considering the magnetic field as a background dipolar field on which two small time disturbances are superimposed: a symmetric disturbance and an asymmetric disturbance. Within this framework, electromagnetic radial diffusion is quantified analytically, taking into account both induced electric and magnetic contributions. The role played by the time variations of the field asymmetry is highlighted. From this, we deduce instantaneous field asymmetries from measurements of the magnetic field at the same time in two different places of the geostationary orbit. Then, we perform a statistical analysis of the time variations of this signal based on more than 7 years of data from the NOAA-GOES 8, NOAA-GOES 10, and NOAA-GOES 12 spacecraft, working with time resolutions of 1 and 5 min. We show that the asymmetry signal is not stationary, having time-dependent statistical properties, and we question accordingly the standard formulation of the electromagnetic radial diffusion coefficient and the role of drift-resonant interactions. Finally, we provide new electromagnetic radial diffusion coefficients at geostationary orbit as a function of electron kinetic energy and Kp index from 0 to 4. Key Points Correlation between magnetic variations and induced electric fields Statistics based on more than seven years of geostationary data Questioning the assumption of uncorrelated stationary signals ©2013. American Geophysical Union. All Rights Reserved.

Cite

CITATION STYLE

APA

Lejosne, S., Boscher, D., Maget, V., & Rolland, G. (2013). Deriving electromagnetic radial diffusion coefficients of radiation belt equatorial particles for different levels of magnetic activity based on magnetic field measurements at geostationary orbit. Journal of Geophysical Research: Space Physics, 118(6), 3147–3156. https://doi.org/10.1002/jgra.50361

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free