Recent studies have demonstrated that bone marrow-derived fibroblasts contribute significantly to the pathogenesis of renal fibrosis. However, the signaling mechanisms underlying the activation of bone marrow-derived fibroblasts in the kidney are incompletely understood. As TGF-β1/Smad3 signaling has been shown to have an important role in the pathogenesis of kidney fibrosis, we investigated the role of Smad3 in the activation of bone marrow-derived fibroblasts in the kidney following obstructive injury using Smad3-knockout mice and Smad3-null monocytes. Compared with wild-type mice, Smad3-knockout mice accumulated significantly fewer bone marrow-derived fibroblasts in the kidney after obstructive injury. Furthermore, Smad3-knockout mice exhibited less myofibroblast activation and expressed less .-SMA in the obstructed kidney. Consistent with these findings, genetic deletion of Smad3 reduced total collagen deposition and suppressed the expression of extracellular matrix proteins. Moreover, wild-type mice engrafted with Smad3-/- bone marrow cells displayed fewer bone marrow-derived fibroblasts in the kidney with obstructive injury and showed less severe renal fibrosis compared with wild-type mice engrafted with Smad3+/+ bone marrow cells. In cultured monocytes, TGF-β1 induced phosphorylation of Smad3 and Smad3 deficiency abolished TGF-β1-induced expression of .-SMA and extracellular matrix proteins. Taken together, our results demonstrate that Smad3 signaling has an essential role in the activation of bone marrow-derived fibroblasts in the kidney during the pathogenesis of renal fibrosis. © 2014 USCAP, Inc.
CITATION STYLE
Chen, J., Xia, Y., Lin, X., Feng, X. H., & Wang, Y. (2014). Smad3 signaling activates bone marrow-derived fibroblasts in renal fibrosis. Laboratory Investigation, 94(5), 545–556. https://doi.org/10.1038/labinvest.2014.43
Mendeley helps you to discover research relevant for your work.